Preparation and Mechanical Properties of Compositionally Graded Polyethylene/Clay Nanocomposites
Authors
Abstract:
This paper presents the preparation and mechanical properties of compatibilized compositionally graded Polyethylene/ low density polyethylene (LDPE)/ modified montmorillonite (MMT) nanocomposites prepared by solution and melt mixing techniques. Use of polyethylene glycol as compatibilizer improves compatibility of modified montmorillonite and low density polyethylene. Comparisons between two techniques show that the melt mixing technique is the preferred method for preparation the Polyethylene/Clay nanocomposites for uniform and compositionally graded distributions. It is observed, the addition of Nano clay improves the mechanical properties like tensile strength. Also, it is noticed the mechanical properties of compositionally graded Polyethylene/Clay nanocomposites are improved rather than the uniform distribution of Polyethylene/Clay nanocomposites. The morphology of nanocomposites cross section samples is studied by Scanning Electron Microscopy (SEM) and finally the comparison are made between two techniques and then between compositionally graded polyethylene/clay nanocomposites with uniform ones. Its show that when the compatibilizer was added for melt mixing technique, the density and the size of the aggregates decreased, which indicates that the dispersion of nano clays within the polymer matrix is much better.
similar resources
determination of some physical and mechanical properties red bean
چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...
15 صفحه اولPreparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites
We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found t...
full textDesign and fabrication of compositionally graded inorganic oxide thin films: Mechanical, optical and permeation characteristics
Different types of inorganic oxide films composed of a chemical composition gradient single layer were designed, fabricated and characterized. Compositionally graded thin films were created by power-controlled co-sputtering of alumina (Al2O3) and silica (SiO2) at room temperature, allowing the structural design of the film to be tailored at the nanometer scale. Two distinct graded thin films we...
full textPreparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites
New epoxidized soybean oil (ESO)/clay nanocomposites have been prepared with triethylenetetramine (TETA) as a curing agent. The dispersion of the clay layers is investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM data reveal the intercalated structure of ESO/clay nanocomposites has been developed. The thermogravimetric analysis exhibits that the ESO/c...
full textEffective Mechanical Properties of Nanocomposites Reinforced With Carbon Nanotubes Bundle
Nanocomposites made of Carbon Nanotube (CNT) bundles have attracted researchers’ attention due to their unusual properties such as: light weight, flexibility and stiffness. In this paper, the effects of straight and rope-shaped bundles on nanocomposite effective mechanical properties are investigated. First, FEA models are created consisting of CNTs with different shapes of straight and rope-...
full textPreparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties
(2014) Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: The effect of graphene oxide (GO) on the mechanical properties and the cu...
full textMy Resources
Journal title
volume 10 issue 1
pages 124- 129
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023